DR. PAUL L. BAILEY

- $\cos(A B) = \cos A \cos B + \sin A \sin B$
- $\cos(A+B) = \cos A \cos B \sin A \sin B$
- $\sin(A+B) = \sin A \cos B + \sin B \cos A$
- $\sin(A B) = \sin A \cos B \sin B \cos A$
- $\sin(30^\circ) = \frac{1}{2}$ $\cos(30^\circ) = \frac{\sqrt{3}}{2}$
- $\sin(45^\circ) = \frac{\sqrt{2}}{2}$ $\cos(45^\circ) = \frac{\sqrt{2}}{2}$
- $\sin(60^\circ) = \frac{\sqrt{3}}{2}$ $\cos(60^\circ) = \frac{1}{2}$

Problem 1. Note that $15^{\circ} = 45^{\circ} - 30^{\circ}$

- (a) Find $\sin(15^{\circ})$.
- **(b)** Find $\cos(15^{\circ})$.

Problem 2. Suppose that $\sin(A) = \frac{4}{5}$ and $\sin(B) = \frac{3}{5}$.

- (a) Find cos(A) and cos(B).
- **(b)** Find cos(A B) and cos(A + B).
- (c) Find sin(A + B) and sin(A B).

Problem 3. Suppose that $cos(A) = \frac{4}{5}$ and $cos(B) = \frac{1}{5}$.

(a) Find sin(A) and sin(B).

(b) Find cos(A - B) and cos(A + B).

(c) Find $\sin(A+B)$ and $\sin(A-B)$.

Problem 4. Suppose that $sin(A) = \frac{5}{7}$ and $sin(B) = \frac{2}{7}$.

(a) Find cos(A) and cos(B).

(b) Find cos(A - B) and cos(A + B).

(c) Find sin(A+B) and sin(A-B).